Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Sheng-Lou Deng,* Ru-Yu Chen, Xue-Bing Leng and Lin-Hong Weng

Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail:

shengloudeng@hotmail.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.041$
$w R$ factor $=0.118$
Data-to-parameter ratio $=14.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

5-Ethyl-6-oxo-4-thioxo-1,3,2-oxaza-phospholidino[3,2-a][1,3,2]benzodiazaphosphorine

The title fused tricyclic phosphoroheterocycle, $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PS}$, was unexpectedly synthesized by the reaction of a multifunctional compound, 2-[N-(2'-hydroxy)ethyl]amino- N^{\prime}-ethylbenzamide, with tris(diethylamino)phosphine in the presence of iodine as catalyst. The crystallographic data analysis reveals that the title compound is triclinic with space group $P \overline{1}$ and there are three rings in the molecule. The phenyl ring, the two N atoms and the carbonyl C atom are coplanar; the P atom and the carbonyl C atom deviate by -0.692 (2) and 0.1116 (13) \AA, respectively, from the phenyl ring plane. The five-membered ring exists in an boat conformation.

Comment

In new pharmaceuticals and agrochemicals, the incorporation of heterocycles is recommended to improve the biological activity. In particular, phospha-heterocycles, such as benzoannulated and related analogs of cyclophosphamide, have shown antitumor activity, and have received considerable interest in the fields of chemistry, medicine and agricultural science (Rao et al., 2000; Neda et al., 1996; Viljanen et al., 1998; Huang \& Chen, 2000).

Among numerous methods for the synthesis of phosphorus heterocycles, tris(diethylamino)phosphine is frequently used as a cyclizing reagent (Nifantev et al., 1990, 1991; Burilov et al., 1995; Chen \& Wang, 1990; Terenteva et al., 1983; Jurkschat et al., 1982). However, $\mathrm{P}\left(\mathrm{NEt}_{2}\right)_{3}$ has seldom been reported as a cyclocondensation reagent for compounds with multifunctional groups of different reactivity. Usually, the fused phosphora-heterocycles have been prepared step by step for the ring closure (Chen \& Bao, 1989, 1990). However, utilization of $\mathrm{P}\left(\mathrm{NEt}_{2}\right)_{3}$ for the synthesis of the title heterocycle, (2), through reaction with multifunctional $2-\left[N-\left(2^{\prime}\right.\right.$-hydroxy $)-$ ethyl]amino- N^{\prime}-ethylbenzamide has been successful in a onepot procedure in the presence of iodine as catalyst. Isolation of the product becomes difficult in the absence of catalyst as the reaction gives a more complex mixture. Using PCl_{3} instead of $\mathrm{P}\left(\mathrm{NEt}_{2}\right)_{3}$, leads only to chlorinated products (Deng et al., 2000). The preliminary bioassays indicate that (2) possesses herbicidal activity. In order to study the structural properties of this novel fused phospha-heterocycle and study its struc-

Received 27 November 2002
Accepted 27 January 2003
Online 7 February 2003

Figure 1

View of the title molecule, with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.
ture-activity relationship, a single crystal of (2) was subjected to X-ray diffraction analysis.

This analysis reveals that there are three rings in the molecule. The phenyl ring and three atoms ($\mathrm{N} 1, \mathrm{C} 7$ and N 2) are coplanar, and atoms P1 and C7 are on different sides of this plane at distances of -0.692 (2) and 0.1116 (13) \AA, respectively. This is different from the observation regarding the structure of N -(1-ethoxycarbonylethyl)-1-(ethoxycarbon-ylmethyl)-3-ethyl-1,2,3,4-tetrahydro-4-oxo-1,3,2-benzodiaza-phosphorine-2-carboxamide 2-oxide, in which the phos-phorus-containing bicyclic moiety is planar, except for the P atom on one side of the plane (Huang et al., 2001). It is also observed that atoms $\mathrm{P} 1, \mathrm{~N} 1, \mathrm{C} 8$ and O 1 are coplanar, with atom C9 displaced from this plane. The five-membered ring exists in a boat conformation with C 9 at one tip, hence the ${ }^{1} \mathrm{H}$ NMR spectrum of the protons on atom C9 appears magnetically non-equivalent.

A comparable tricyclic compound, namely 6,12-dioxo-1(p-chlorophenyl)imino-11-ethyl-1,4,3-thiazaphospha-cyclo-hexano[3,4]-1,3,2-benzodiazaphosphorine, has been reported previously, with a planar structure for the benzodiazaphosphorine moiety and a chair conformation for the sixmembered 1,4,3-thiazaphosphorine (Chen et al., 1991). That compound has an anthracene-like structure and shows some herbicidal activity at 100 p.p.m. In contrast, the title compound is phenanthrene-like with similar planar characteristics and boat conformation as in the five-membered 1,3,2-oxazaphospholidine, showing inhibition against oil rape root by 25% at 10 p.p.m.

Experimental

$0.55 \mathrm{~g}(2.2 \mathrm{mmol})$ of $\mathrm{P}\left(\mathrm{NEt}_{2}\right)_{3}$ was dropped into 30 ml anhydrous benzene at room temperature, and then $0.051 \mathrm{~g}(0.2 \mathrm{mmol})$ of iodine was added at 343 K . After stirring for $15 \mathrm{~min}, 0.42 \mathrm{~g}(2 \mathrm{mmol})$ of 2[N-(2'-hydroxy)ethylamino]- N^{\prime}-ethylbenzamide, (1), was added, and the solution was heated to 348 K for 2.5 h . After the addition of an equivalent amount of S_{8}, the reaction mixture was allowed to reflux for another 1.5 h . The product was then isolated by flash chromatography with ethyl acetate-petroleum ether $(1 / 1, v / v)$ as eluant, and purified by recrystallization from a mixture of chloroform and petroleum ether. 0.25 g of the title compound, (2), was obtained. Yield: 46.6%, m.p. $384 \mathrm{~K} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$ as solvent, TMS as
internal reference, δ): 8.13-7.03 ($m, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 4.64-4.16 ($m, 3 \mathrm{H}$), 3.98-3.64 ($m, 3 \mathrm{H}$), 1.36-1.29 $\left(t,{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.86 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 85 \% \mathrm{H}_{3} \mathrm{PO}_{4}\right.$ as external standard): 71.94 p.p.m. Analysis calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}$ PS: C 49.25 , H 4.85, N 10.44%; found: C 49.12; H 4.95, N 10.36%.

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PS}$
$M_{r}=268.26$
Triclinic, $P \overline{1}$
$a=6.9347$ (7) \AA 。
$b=9.9827$ (10) \AA
$c=10.4868$ (11) \AA
$\alpha=61.633$ (2) ${ }^{\circ}$
$\beta=78.828$ (2) ${ }^{\circ}$
$\gamma=83.139(2)^{\circ}$
$V=626.38(11) \AA^{3}$

Data collection

Bruker CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.564, T_{\text {max }}=0.927$
2621 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.118$
$S=1.04$
2208 reflections
154 parameters
H -atom parameters constrained

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.422 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 231 \\
& \quad \text { reflections } \\
& \theta=2.8-22.8^{\circ} \\
& \mu=0.38 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Prism, colorless } \\
& 0.30 \times 0.25 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

2208 independent reflections
1940 reflections with $I>2 \sigma(1)$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-8 \rightarrow 6$
$k=-11 \rightarrow 11$
$l=-12 \rightarrow 12$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0718 P)^{2}\right. \\
& \quad+0.2182 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.44 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}
$$

The H atoms were positioned geometrically and refined with riding-model positional parameters and fixed isotropic displacement parameters.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997) and SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: $S H E L X T L$; software used to prepare material for publication: SHELXTL.

We are grateful to Professor Xiu-Feng Yang for the preliminary bioassays.

References

Bruker (1997). SAINT, SMART and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Burilov, A. R., Barullin, A. A. \& Pudovik, M. A. (1995). Zh. Obshch. Khim. 65, 373-376.
Chen, R. Y. \& Bao, R. (1989). Synthesis, pp. 618-621.
Chen, R. Y. \& Bao, R. (1990). Synthesis, pp. 137-139.
Chen, R. Y., Bao, R., Yao, X. K. \& Wang, R. J. (1991). Acta Chem. Sin. 49, 225231.

Chen, R. Y. \& Wang, J. W. (1990). Chin. Chem. Lett. 1, 59-60.
Deng, S. L., Huang, J. M. \& Chen, R. Y. (2000). Chin. Chem. Lett. 11, 867-870.
Huang, J. M. \& Chen, R. Y. (2000). Chem. J. Chin. Univ. 21, 1510-1514.
Huang, J. M., Chen, R. Y., Chen, H. \& Wang, H. G. (2001). Chin. J. Struct. Chem. 20, 354-357.
Jurkschat, K., Mügge, C., Tzschach, A., Uhlig, W. \& Zschunke, A. (1982). Tetrahedron Lett. 23, 1345-1348.
Neda, I., Melnicky, C., Vollbrecht, A. \& Schmutzler, R. (1996). Synthesis (Stuttgart), 4, 473-474.

organic papers

Nifantev, E. E., Koroteev, M. P., Koroteev, A. M., Belskii, V. K. \& Magomedova, N. S. (1991). Zh. Obshch. Khim. 61, 2505-2513.
Nifantev, E. E., Zavalishina, A. I., Dorogotovtsev, S. S., Orzhekovskaia, E. I., Bekker, A. R., Sirotinkin, S. P. \& Nevskii, N. N. (1990). Dokl. Akad. Nauk SSSR, 312, 372-376.
Rao, L. N., Reddy, V. K. \& Reddy, C. D. (2000). Heteroatom Chem. 11, 323328.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Terenteva, S. A., Pudovik, M. A. \& Pudovik, A. N. (1983). Izv. Akad. Nauk SSSR Ser. Khim. 1, 221-222.
Viljanen, T., Tähtinen, P., Pihlaja, K. \& Fülöp, F. (1998). J. Org. Chem. 63, 618627.

